Coverage for chebpy/core/chebfun.py: 99%
313 statements
« prev ^ index » next coverage.py v7.10.2, created at 2025-08-07 10:30 +0000
« prev ^ index » next coverage.py v7.10.2, created at 2025-08-07 10:30 +0000
1"""Implementation of the Chebfun class for piecewise function approximation.
3This module provides the Chebfun class, which is the main user-facing class in the
4ChebPy package. It represents functions using piecewise polynomial approximations
5on arbitrary intervals, allowing for operations such as integration, differentiation,
6root-finding, and more.
8The Chebfun class is inspired by the MATLAB package of the same name and provides
9similar functionality for working with functions rather than numbers.
10"""
12import operator
14import matplotlib.pyplot as plt
15import numpy as np
17from .bndfun import Bndfun
18from .decorators import cache, cast_arg_to_chebfun, float_argument, self_empty
19from .exceptions import BadFunLengthArgument, SupportMismatch
20from .plotting import plotfun
21from .settings import _preferences as prefs
22from .utilities import Domain, check_funs, compute_breakdata, generate_funs
25class Chebfun:
26 """Main class for representing and manipulating functions in ChebPy.
28 The Chebfun class represents functions using piecewise polynomial approximations
29 on arbitrary intervals. It provides a comprehensive set of operations for working
30 with these function representations, including:
32 - Function evaluation at arbitrary points
33 - Algebraic operations (addition, multiplication, etc.)
34 - Calculus operations (differentiation, integration, etc.)
35 - Rootfinding
36 - Plotting
38 Chebfun objects can be created from callable functions, constant values, or
39 directly from function pieces. The class supports both adaptive and fixed-length
40 approximations, allowing for efficient representation of functions with varying
41 complexity across different intervals.
43 Attributes:
44 funs (numpy.ndarray): Array of function pieces that make up the Chebfun.
45 breakdata (OrderedDict): Mapping of breakpoints to function values.
46 transposed (bool): Flag indicating if the Chebfun is transposed.
47 """
49 def __init__(self, funs):
50 """Initialize a Chebfun object.
52 Args:
53 funs (list): List of function objects to be included in the Chebfun.
54 These will be checked and sorted using check_funs.
55 """
56 self.funs = check_funs(funs)
57 self.breakdata = compute_breakdata(self.funs)
58 self.transposed = False
60 @classmethod
61 def initempty(cls):
62 """Initialize an empty Chebfun.
64 Returns:
65 Chebfun: An empty Chebfun object with no functions.
66 """
67 return cls([])
69 @classmethod
70 def initidentity(cls, domain=None):
71 """Initialize a Chebfun representing the identity function f(x) = x.
73 Args:
74 domain (array-like, optional): Domain on which to define the identity function.
75 If None, uses the default domain from preferences.
77 Returns:
78 Chebfun: A Chebfun object representing the identity function on the specified domain.
79 """
80 return cls(generate_funs(domain, Bndfun.initidentity))
82 @classmethod
83 def initconst(cls, c, domain=None):
84 """Initialize a Chebfun representing a constant function f(x) = c.
86 Args:
87 c (float or complex): The constant value.
88 domain (array-like, optional): Domain on which to define the constant function.
89 If None, uses the default domain from preferences.
91 Returns:
92 Chebfun: A Chebfun object representing the constant function on the specified domain.
93 """
94 return cls(generate_funs(domain, Bndfun.initconst, {"c": c}))
96 @classmethod
97 def initfun_adaptive(cls, f, domain=None):
98 """Initialize a Chebfun by adaptively sampling a function.
100 This method determines the appropriate number of points needed to represent
101 the function to the specified tolerance using an adaptive algorithm.
103 Args:
104 f (callable): The function to be approximated.
105 domain (array-like, optional): Domain on which to define the function.
106 If None, uses the default domain from preferences.
108 Returns:
109 Chebfun: A Chebfun object representing the function on the specified domain.
110 """
111 return cls(generate_funs(domain, Bndfun.initfun_adaptive, {"f": f}))
113 @classmethod
114 def initfun_fixedlen(cls, f, n, domain=None):
115 """Initialize a Chebfun with a fixed number of points.
117 This method uses a specified number of points to represent the function,
118 rather than determining the number adaptively.
120 Args:
121 f (callable): The function to be approximated.
122 n (int or array-like): Number of points to use. If a single value, uses the same
123 number for each interval. If an array, must have one fewer elements than
124 the size of the domain.
125 domain (array-like, optional): Domain on which to define the function.
126 If None, uses the default domain from preferences.
128 Returns:
129 Chebfun: A Chebfun object representing the function on the specified domain.
131 Raises:
132 BadFunLengthArgument: If n is an array and its size doesn't match domain.size - 1.
133 """
134 nn = np.array(n)
135 if nn.size < 2:
136 funs = generate_funs(domain, Bndfun.initfun_fixedlen, {"f": f, "n": n})
137 else:
138 domain = Domain(domain if domain is not None else prefs.domain)
139 if not nn.size == domain.size - 1:
140 raise BadFunLengthArgument
141 funs = []
142 for interval, length in zip(domain.intervals, nn):
143 funs.append(Bndfun.initfun_fixedlen(f, interval, length))
144 return cls(funs)
146 @classmethod
147 def initfun(cls, f, domain=None, n=None):
148 """Initialize a Chebfun from a function.
150 This is a general-purpose constructor that delegates to either initfun_adaptive
151 or initfun_fixedlen based on whether n is provided.
153 Args:
154 f (callable): The function to be approximated.
155 domain (array-like, optional): Domain on which to define the function.
156 If None, uses the default domain from preferences.
157 n (int or array-like, optional): Number of points to use. If None, determines
158 the number adaptively. If provided, uses a fixed number of points.
160 Returns:
161 Chebfun: A Chebfun object representing the function on the specified domain.
162 """
163 if n is None:
164 return cls.initfun_adaptive(f, domain)
165 else:
166 return cls.initfun_fixedlen(f, n, domain)
168 # --------------------
169 # operator overloads
170 # --------------------
171 def __add__(self, f):
172 """Add a Chebfun with another Chebfun or a scalar.
174 Args:
175 f (Chebfun or scalar): The object to add to this Chebfun.
177 Returns:
178 Chebfun: A new Chebfun representing the sum.
179 """
180 return self._apply_binop(f, operator.add)
182 @self_empty(np.array([]))
183 @float_argument
184 def __call__(self, x):
185 """Evaluate the Chebfun at points x.
187 This method evaluates the Chebfun at the specified points. It handles interior
188 points, breakpoints, and points outside the domain appropriately.
190 Args:
191 x (float or array-like): Points at which to evaluate the Chebfun.
193 Returns:
194 float or numpy.ndarray: The value(s) of the Chebfun at the specified point(s).
195 Returns a scalar if x is a scalar, otherwise an array of the same size as x.
196 """
197 # initialise output
198 dtype = complex if self.iscomplex else float
199 out = np.full(x.size, np.nan, dtype=dtype)
201 # evaluate a fun when x is an interior point
202 for fun in self:
203 idx = fun.interval.isinterior(x)
204 out[idx] = fun(x[idx])
206 # evaluate the breakpoint data for x at a breakpoint
207 breakpoints = self.breakpoints
208 for break_point in breakpoints:
209 out[x == break_point] = self.breakdata[break_point]
211 # first and last funs used to evaluate outside of the chebfun domain
212 lpts, rpts = x < breakpoints[0], x > breakpoints[-1]
213 out[lpts] = self.funs[0](x[lpts])
214 out[rpts] = self.funs[-1](x[rpts])
215 return out
217 def __iter__(self):
218 """Return an iterator over the functions in this Chebfun.
220 Returns:
221 iterator: An iterator over the functions (funs) in this Chebfun.
222 """
223 return self.funs.__iter__()
225 def __eq__(self, other):
226 """Test for equality between two Chebfun objects.
228 Two Chebfun objects are considered equal if they have the same domain
229 and their function values are equal (within tolerance) at a set of test points.
231 Args:
232 other (object): The object to compare with this Chebfun.
234 Returns:
235 bool: True if the objects are equal, False otherwise.
236 """
237 if not isinstance(other, self.__class__):
238 return False
240 # Check if both are empty
241 if self.isempty and other.isempty:
242 return True
244 # Check if domains are equal
245 if self.domain != other.domain:
246 return False
248 # Check function values at test points
249 xx = np.linspace(self.support[0], self.support[1], 100)
250 tol = 1e2 * max(self.vscale, other.vscale) * prefs.eps
251 return np.all(np.abs(self(xx) - other(xx)) <= tol)
253 def __mul__(self, f):
254 """Multiply a Chebfun with another Chebfun or a scalar.
256 Args:
257 f (Chebfun or scalar): The object to multiply with this Chebfun.
259 Returns:
260 Chebfun: A new Chebfun representing the product.
261 """
262 return self._apply_binop(f, operator.mul)
264 def __neg__(self):
265 """Return the negative of this Chebfun.
267 Returns:
268 Chebfun: A new Chebfun representing -f(x).
269 """
270 return self.__class__(-self.funs)
272 def __pos__(self):
273 """Return the positive of this Chebfun (which is the Chebfun itself).
275 Returns:
276 Chebfun: This Chebfun object (unchanged).
277 """
278 return self
280 def __pow__(self, f):
281 """Raise this Chebfun to a power.
283 Args:
284 f (Chebfun or scalar): The exponent to which this Chebfun is raised.
286 Returns:
287 Chebfun: A new Chebfun representing self^f.
288 """
289 return self._apply_binop(f, operator.pow)
291 def __rtruediv__(self, c):
292 """Divide a scalar by this Chebfun.
294 This method is called when a scalar is divided by a Chebfun, i.e., c / self.
296 Args:
297 c (scalar): The scalar numerator.
299 Returns:
300 Chebfun: A new Chebfun representing c / self.
302 Note:
303 This is executed when truediv(f, self) fails, which is to say whenever c
304 is not a Chebfun. We proceed on the assumption f is a scalar.
305 """
307 def constfun(cheb, const):
308 return 0.0 * cheb + const
310 newfuns = [fun.initfun_adaptive(lambda x: constfun(x, c) / fun(x), fun.interval) for fun in self]
311 return self.__class__(newfuns)
313 @self_empty("Chebfun<empty>")
314 def __repr__(self):
315 """Return a string representation of the Chebfun.
317 This method returns a detailed string representation of the Chebfun,
318 including information about its domain, intervals, and endpoint values.
320 Returns:
321 str: A string representation of the Chebfun.
322 """
323 rowcol = "row" if self.transposed else "column"
324 numpcs = self.funs.size
325 plural = "" if numpcs == 1 else "s"
326 header = f"Chebfun {rowcol} ({numpcs} smooth piece{plural})\n"
327 domain_info = f"domain: {self.support}\n"
328 toprow = " interval length endpoint values\n"
329 tmplat = "[{:8.2g},{:8.2g}] {:6} {:8.2g} {:8.2g}\n"
330 rowdta = ""
331 for fun in self:
332 endpts = fun.support
333 xl, xr = endpts
334 fl, fr = fun(endpts)
335 row = tmplat.format(xl, xr, fun.size, fl, fr)
336 rowdta += row
337 btmrow = f"vertical scale = {self.vscale:3.2g}"
338 btmxtr = "" if numpcs == 1 else f" total length = {sum([f.size for f in self])}"
339 return header + domain_info + toprow + rowdta + btmrow + btmxtr
341 def __rsub__(self, f):
342 """Subtract this Chebfun from another object.
344 This method is called when another object is subtracted by this Chebfun,
345 i.e., f - self.
347 Args:
348 f (Chebfun or scalar): The object from which to subtract this Chebfun.
350 Returns:
351 Chebfun: A new Chebfun representing f - self.
352 """
353 return -(self - f)
355 @cast_arg_to_chebfun
356 def __rpow__(self, f):
357 """Raise another object to the power of this Chebfun.
359 This method is called when another object is raised to the power of this Chebfun,
360 i.e., f ** self.
362 Args:
363 f (Chebfun or scalar): The base to be raised to the power of this Chebfun.
365 Returns:
366 Chebfun: A new Chebfun representing f ** self.
367 """
368 return f**self
370 def __truediv__(self, f):
371 """Divide this Chebfun by another object.
373 Args:
374 f (Chebfun or scalar): The divisor.
376 Returns:
377 Chebfun: A new Chebfun representing self / f.
378 """
379 return self._apply_binop(f, operator.truediv)
381 __rmul__ = __mul__
382 __div__ = __truediv__
383 __rdiv__ = __rtruediv__
384 __radd__ = __add__
386 def __str__(self):
387 """Return a concise string representation of the Chebfun.
389 This method returns a brief string representation of the Chebfun,
390 showing its orientation, number of pieces, total size, and domain.
392 Returns:
393 str: A concise string representation of the Chebfun.
394 """
395 rowcol = "row" if self.transposed else "col"
396 domain_str = f"domain {self.support}" if not self.isempty else "empty"
397 out = f"<Chebfun-{rowcol},{self.funs.size},{sum([f.size for f in self])}, {domain_str}>\n"
398 return out
400 def __sub__(self, f):
401 """Subtract another object from this Chebfun.
403 Args:
404 f (Chebfun or scalar): The object to subtract from this Chebfun.
406 Returns:
407 Chebfun: A new Chebfun representing self - f.
408 """
409 return self._apply_binop(f, operator.sub)
411 # ------------------
412 # internal helpers
413 # ------------------
414 @self_empty()
415 def _apply_binop(self, f, op):
416 """Apply a binary operation between this Chebfun and another object.
418 This is a funnel method used in the implementation of Chebfun binary
419 operators. The high-level idea is to first break each chebfun into a
420 series of pieces corresponding to the union of the domains of each
421 before applying the supplied binary operator and simplifying. In the
422 case of the second argument being a scalar we don't need to do the
423 simplify step, since at the Tech-level these operations are defined
424 such that there is no change in the number of coefficients.
426 Args:
427 f (Chebfun or scalar): The second operand of the binary operation.
428 op (callable): The binary operation to apply (e.g., operator.add).
430 Returns:
431 Chebfun: A new Chebfun resulting from applying the binary operation.
432 """
433 if hasattr(f, "isempty") and f.isempty:
434 return f
435 if np.isscalar(f):
436 chbfn1 = self
437 chbfn2 = f * np.ones(self.funs.size)
438 simplify = False
439 else:
440 newdom = self.domain.union(f.domain)
441 chbfn1 = self._break(newdom)
442 chbfn2 = f._break(newdom)
443 simplify = True
444 newfuns = []
445 for fun1, fun2 in zip(chbfn1, chbfn2):
446 newfun = op(fun1, fun2)
447 if simplify:
448 newfun = newfun.simplify()
449 newfuns.append(newfun)
450 return self.__class__(newfuns)
452 def _break(self, targetdomain):
453 """Resample this Chebfun to a new domain.
455 This method resamples the Chebfun to the supplied Domain object. It is
456 intended as a private method since one will typically need to have
457 called either Domain.union(f) or Domain.merge(f) prior to calling this method.
459 Args:
460 targetdomain (Domain): The domain to which this Chebfun should be resampled.
462 Returns:
463 Chebfun: A new Chebfun resampled to the target domain.
464 """
465 newfuns = []
466 subintervals = targetdomain.intervals
467 interval = next(subintervals) # next(..) for Python2/3 compatibility
468 for fun in self:
469 while interval in fun.interval:
470 newfun = fun.restrict(interval)
471 newfuns.append(newfun)
472 try:
473 interval = next(subintervals)
474 except StopIteration:
475 break
476 return self.__class__(newfuns)
478 # ------------
479 # properties
480 # ------------
481 @property
482 def breakpoints(self):
483 """Get the breakpoints of this Chebfun.
485 Breakpoints are the points where the Chebfun transitions from one piece to another.
487 Returns:
488 numpy.ndarray: Array of breakpoints.
489 """
490 return np.array([x for x in self.breakdata.keys()])
492 @property
493 @self_empty(np.array([]))
494 def domain(self):
495 """Get the domain of this Chebfun.
497 Returns:
498 Domain: A Domain object corresponding to this Chebfun.
499 """
500 return Domain.from_chebfun(self)
502 @domain.setter
503 def domain(self, new_domain):
504 """Set the domain of the Chebfun by restricting to the new domain.
506 Args:
507 new_domain (array-like): The new domain to which this Chebfun should be restricted.
508 """
509 self.restrict_(new_domain)
511 @property
512 @self_empty(Domain([]))
513 def support(self):
514 """Get the support interval of this Chebfun.
516 The support is the interval between the first and last breakpoints.
518 Returns:
519 numpy.ndarray: Array containing the first and last breakpoints.
520 """
521 return self.domain.support
523 @property
524 @self_empty(0.0)
525 def hscale(self):
526 """Get the horizontal scale of this Chebfun.
528 The horizontal scale is the maximum absolute value of the support interval.
530 Returns:
531 float: The horizontal scale.
532 """
533 return float(np.abs(self.support).max())
535 @property
536 @self_empty(False)
537 def iscomplex(self):
538 """Check if this Chebfun has complex values.
540 Returns:
541 bool: True if any of the functions in this Chebfun have complex values,
542 False otherwise.
543 """
544 return any(fun.iscomplex for fun in self)
546 @property
547 @self_empty(False)
548 def isconst(self):
549 """Check if this Chebfun represents a constant function.
551 A Chebfun is constant if all of its pieces are constant with the same value.
553 Returns:
554 bool: True if this Chebfun represents a constant function, False otherwise.
556 Note:
557 TODO: find an abstract way of referencing funs[0].coeffs[0]
558 """
559 c = self.funs[0].coeffs[0]
560 return all(fun.isconst and fun.coeffs[0] == c for fun in self)
562 @property
563 def isempty(self):
564 """Check if this Chebfun is empty.
566 An empty Chebfun contains no functions.
568 Returns:
569 bool: True if this Chebfun is empty, False otherwise.
570 """
571 return self.funs.size == 0
573 @property
574 @self_empty(0.0)
575 def vscale(self):
576 """Get the vertical scale of this Chebfun.
578 The vertical scale is the maximum of the vertical scales of all pieces.
580 Returns:
581 float: The vertical scale.
582 """
583 return np.max([fun.vscale for fun in self])
585 @property
586 @self_empty()
587 def x(self):
588 """Get the identity function on the support of this Chebfun.
590 This property returns a new Chebfun representing the identity function f(x) = x
591 defined on the same support as this Chebfun.
593 Returns:
594 Chebfun: A Chebfun representing the identity function on the support of this Chebfun.
595 """
596 return self.__class__.initidentity(self.support)
598 # -----------
599 # utilities
600 # ----------
602 def imag(self):
603 """Get the imaginary part of this Chebfun.
605 Returns:
606 Chebfun: A new Chebfun representing the imaginary part of this Chebfun.
607 If this Chebfun is real-valued, returns a zero Chebfun.
608 """
609 if self.iscomplex:
610 return self.__class__([fun.imag() for fun in self])
611 else:
612 return self.initconst(0, domain=self.domain)
614 def real(self):
615 """Get the real part of this Chebfun.
617 Returns:
618 Chebfun: A new Chebfun representing the real part of this Chebfun.
619 If this Chebfun is already real-valued, returns this Chebfun.
620 """
621 if self.iscomplex:
622 return self.__class__([fun.real() for fun in self])
623 else:
624 return self
626 def copy(self):
627 """Create a deep copy of this Chebfun.
629 Returns:
630 Chebfun: A new Chebfun that is a deep copy of this Chebfun.
631 """
632 return self.__class__([fun.copy() for fun in self])
634 @self_empty()
635 def _restrict(self, subinterval):
636 """Restrict a Chebfun to a subinterval, without simplifying.
638 This is an internal method that restricts the Chebfun to a subinterval
639 without performing simplification.
641 Args:
642 subinterval (array-like): The subinterval to which this Chebfun should be restricted.
644 Returns:
645 Chebfun: A new Chebfun restricted to the specified subinterval, without simplification.
646 """
647 newdom = self.domain.restrict(Domain(subinterval))
648 return self._break(newdom)
650 def restrict(self, subinterval):
651 """Restrict a Chebfun to a subinterval.
653 This method creates a new Chebfun that is restricted to the specified subinterval
654 and simplifies the result.
656 Args:
657 subinterval (array-like): The subinterval to which this Chebfun should be restricted.
659 Returns:
660 Chebfun: A new Chebfun restricted to the specified subinterval.
661 """
662 return self._restrict(subinterval).simplify()
664 @self_empty()
665 def restrict_(self, subinterval):
666 """Restrict a Chebfun to a subinterval, modifying the object in place.
668 This method modifies the current Chebfun by restricting it to the specified
669 subinterval and simplifying the result.
671 Args:
672 subinterval (array-like): The subinterval to which this Chebfun should be restricted.
674 Returns:
675 Chebfun: The modified Chebfun (self).
676 """
677 restricted = self._restrict(subinterval).simplify()
678 self.funs = restricted.funs
679 self.breakdata = compute_breakdata(self.funs)
680 return self
682 @cache
683 @self_empty(np.array([]))
684 def roots(self, merge=None):
685 """Compute the roots of a Chebfun.
687 This method finds the values x for which f(x) = 0, by computing the roots
688 of each piece of the Chebfun and combining them.
690 Args:
691 merge (bool, optional): Whether to merge roots at breakpoints. If None,
692 uses the value from preferences. Defaults to None.
694 Returns:
695 numpy.ndarray: Array of roots sorted in ascending order.
696 """
697 merge = merge if merge is not None else prefs.mergeroots
698 allrts = []
699 prvrts = np.array([])
700 htol = 1e2 * self.hscale * prefs.eps
701 for fun in self:
702 rts = fun.roots()
703 # ignore first root if equal to the last root of previous fun
704 # TODO: there could be multiple roots at breakpoints
705 if prvrts.size > 0 and rts.size > 0:
706 if merge and abs(prvrts[-1] - rts[0]) <= htol:
707 rts = rts[1:]
708 allrts.append(rts)
709 prvrts = rts
710 return np.concatenate([x for x in allrts])
712 @self_empty()
713 def simplify(self):
714 """Simplify each fun in the chebfun."""
715 return self.__class__([fun.simplify() for fun in self])
717 def translate(self, c):
718 """Translate a chebfun by c, i.e., return f(x-c)."""
719 return self.__class__([x.translate(c) for x in self])
721 # ----------
722 # calculus
723 # ----------
724 def cumsum(self):
725 """Compute the indefinite integral (antiderivative) of the Chebfun.
727 This method computes the indefinite integral of the Chebfun, with the
728 constant of integration chosen so that the indefinite integral evaluates
729 to 0 at the left endpoint of the domain. For piecewise functions, constants
730 are added to ensure continuity across the pieces.
732 Returns:
733 Chebfun: A new Chebfun representing the indefinite integral of this Chebfun.
734 """
735 newfuns = []
736 prevfun = None
737 for fun in self:
738 integral = fun.cumsum()
739 if prevfun:
740 # enforce continuity by adding the function value
741 # at the right endpoint of the previous fun
742 _, fb = prevfun.endvalues
743 integral = integral + fb
744 newfuns.append(integral)
745 prevfun = integral
746 return self.__class__(newfuns)
748 def diff(self):
749 """Compute the derivative of the Chebfun.
751 This method calculates the derivative of the Chebfun with respect to x.
752 It creates a new Chebfun where each piece is the derivative of the
753 corresponding piece in the original Chebfun.
755 Returns:
756 Chebfun: A new Chebfun representing the derivative of this Chebfun.
757 """
758 dfuns = np.array([fun.diff() for fun in self])
759 return self.__class__(dfuns)
761 def sum(self):
762 """Compute the definite integral of the Chebfun over its domain.
764 This method calculates the definite integral of the Chebfun over its
765 entire domain of definition by summing the definite integrals of each
766 piece.
768 Returns:
769 float or complex: The definite integral of the Chebfun over its domain.
770 """
771 return np.sum([fun.sum() for fun in self])
773 def dot(self, f):
774 """Compute the dot product of this Chebfun with another function.
776 This method calculates the inner product (dot product) of this Chebfun
777 with another function f by multiplying them pointwise and then integrating
778 the result over the domain.
780 Args:
781 f (Chebfun or scalar): The function or scalar to compute the dot product with.
782 If not a Chebfun, it will be converted to one.
784 Returns:
785 float or complex: The dot product of this Chebfun with f.
786 """
787 return (self * f).sum()
789 # ----------
790 # utilities
791 # ----------
792 @self_empty()
793 def absolute(self):
794 """Absolute value of a Chebfun."""
795 newdom = self.domain.merge(self.roots())
796 funs = [x.absolute() for x in self._break(newdom)]
797 return self.__class__(funs)
799 abs = absolute
801 @self_empty()
802 @cast_arg_to_chebfun
803 def maximum(self, other):
804 """Pointwise maximum of self and another chebfun."""
805 return self._maximum_minimum(other, operator.ge)
807 @self_empty()
808 @cast_arg_to_chebfun
809 def minimum(self, other):
810 """Pointwise mimimum of self and another chebfun."""
811 return self._maximum_minimum(other, operator.lt)
813 def _maximum_minimum(self, other, comparator):
814 """Method for computing the pointwise maximum/minimum of two Chebfuns.
816 This internal method implements the algorithm for computing the pointwise
817 maximum or minimum of two Chebfun objects, based on the provided comparator.
818 It is used by the maximum() and minimum() methods.
820 Args:
821 other (Chebfun): Another Chebfun to compare with this one.
822 comparator (callable): A function that compares two values and returns
823 a boolean. For maximum, this is operator.ge (>=), and for minimum,
824 this is operator.lt (<).
826 Returns:
827 Chebfun: A new Chebfun representing the pointwise maximum or minimum.
828 """
829 # Handle empty Chebfuns
830 if self.isempty or other.isempty:
831 return self.__class__.initempty()
833 # Find the intersection of domains
834 try:
835 # Try to use union if supports match
836 newdom = self.domain.union(other.domain)
837 except SupportMismatch:
838 # If supports don't match, find the intersection
839 a_min, a_max = self.support
840 b_min, b_max = other.support
842 # Calculate intersection
843 c_min = max(a_min, b_min)
844 c_max = min(a_max, b_max)
846 # If there's no intersection, return empty
847 if c_min >= c_max:
848 return self.__class__.initempty()
850 # Restrict both functions to the intersection
851 self_restricted = self.restrict([c_min, c_max])
852 other_restricted = other.restrict([c_min, c_max])
854 # Recursively call with the restricted functions
855 return self_restricted._maximum_minimum(other_restricted, comparator)
857 # Continue with the original algorithm
858 roots = (self - other).roots()
859 newdom = newdom.merge(roots)
860 switch = newdom.support.merge(roots)
862 # Handle the case where switch is empty
863 if switch.size == 0: # pragma: no cover
864 return self.__class__.initempty()
866 keys = 0.5 * ((-1) ** np.arange(switch.size - 1) + 1)
867 if switch.size > 0 and comparator(other(switch[0]), self(switch[0])):
868 keys = 1 - keys
869 funs = np.array([])
870 for interval, use_self in zip(switch.intervals, keys):
871 subdom = newdom.restrict(interval)
872 if use_self:
873 subfun = self.restrict(subdom)
874 else:
875 subfun = other.restrict(subdom)
876 funs = np.append(funs, subfun.funs)
877 return self.__class__(funs)
879 # ----------
880 # plotting
881 # ----------
882 def plot(self, ax=None, **kwds):
883 """Plot the Chebfun over its domain.
885 This method plots the Chebfun over its domain using matplotlib.
886 For complex-valued Chebfuns, it plots the real part against the imaginary part.
888 Args:
889 ax (matplotlib.axes.Axes, optional): The axes on which to plot. If None,
890 a new axes will be created. Defaults to None.
891 **kwds: Additional keyword arguments to pass to matplotlib's plot function.
893 Returns:
894 matplotlib.axes.Axes: The axes on which the plot was created.
895 """
896 return plotfun(self, self.support, ax=ax, **kwds)
898 def plotcoeffs(self, ax=None, **kwds):
899 """Plot the coefficients of the Chebfun on a semilogy scale.
901 This method plots the absolute values of the coefficients for each piece
902 of the Chebfun on a semilogy scale, which is useful for visualizing the
903 decay of coefficients in the Chebyshev series.
905 Args:
906 ax (matplotlib.axes.Axes, optional): The axes on which to plot. If None,
907 a new axes will be created. Defaults to None.
908 **kwds: Additional keyword arguments to pass to matplotlib's semilogy function.
910 Returns:
911 matplotlib.axes.Axes: The axes on which the plot was created.
912 """
913 ax = ax or plt.gca()
914 for fun in self:
915 fun.plotcoeffs(ax=ax, **kwds)
916 return ax
919# ---------
920# ufuncs
921# ---------
922def add_ufunc(op):
923 """Add a NumPy universal function method to the Chebfun class.
925 This function creates a method that applies a NumPy universal function (ufunc)
926 to each piece of a Chebfun and returns a new Chebfun representing the result.
928 Args:
929 op (callable): The NumPy universal function to apply.
931 Note:
932 The created method will have the same name as the NumPy function
933 and will take no arguments other than self.
934 """
936 @self_empty()
937 def method(self):
938 """Apply a NumPy universal function to this Chebfun.
940 This method applies a NumPy universal function (ufunc) to each piece
941 of this Chebfun and returns a new Chebfun representing the result.
943 Args:
944 self (Chebfun): The Chebfun object to which the function is applied.
946 Returns:
947 Chebfun: A new Chebfun representing op(f(x)).
948 """
949 return self.__class__([op(fun) for fun in self])
951 name = op.__name__
952 method.__name__ = name
953 method.__doc__ = method.__doc__
954 setattr(Chebfun, name, method)
957ufuncs = (
958 np.arccos,
959 np.arccosh,
960 np.arcsin,
961 np.arcsinh,
962 np.arctan,
963 np.arctanh,
964 np.cos,
965 np.cosh,
966 np.exp,
967 np.exp2,
968 np.expm1,
969 np.log,
970 np.log2,
971 np.log10,
972 np.log1p,
973 np.sinh,
974 np.sin,
975 np.tan,
976 np.tanh,
977 np.sqrt,
978)
980for op in ufuncs:
981 add_ufunc(op)